AVL(Adelson-Velskii和Landis)树是带有平衡条件的二叉查找树,一棵AVL树是其每个节点的左子树和右子树的高度最多差1的二叉查找树
头文件
#ifndef _AvlTree_H
struct AvlNode;
typedef struct AvlNode *Position;
typedef struct AvlNode *AvlTree;
AvlTree MakeEmpty( AvlTree T );
Position Find( ElementType X, AvlTree T );
Position FindMin( AvlTree T );
Position FindMax( AvlTree T );
AvlTree Insert( ElementType X, AvlTree T );
AvlTree Delete( ElementType X, AvlTree T );
ElementType Retrieve( Position P );
#endif /* _AvlTree_H */
/* Place in the implementation file */
struct AvlNode
{
ElementType Element;
AvlTree Left;
AvlTree Right;
int Height;
}
主要例程,对于删除节点较为复杂,如果删除节点操作较少,懒惰删除无疑是最好的办法
AvlTree MakeEmpty( AvlTree T )
{
if( T != NULL )
{
MakeEmpty( T->Left );
MakeEmpty( T->Right );
free( T );
}
return NULL;
}
Position Find( ElementType X, AvlTree T )
{
if( T == NULL )
return NULL;
if( X > T->Element )
return Find( X, T->Right );
else
if( X < T->Element )
return Find( X, T->Left );
else
return T;
}
Position FindMin( AvlTree T )
{
if( T != NULL )
while( T->Left != NULL )
T = T->Left;
return T;
}
Position FindMax( AvlTree T )
{
if( T != NULL )
while( T->Right != NULL )
T = T->Right;
return T;
}
static int Height( Position P )
{
if( P == NULL )
return -1;
else
return P->Height;
}
AvlTree Insert( ElementType X, AvlTree T )
{
if( T == NULL )
{
T = malloc( sizeof( struct AvlNode ) );
if( T == NULL )
{
printf( "Out of space !!!" );
exit( 1 );
}
else
{
T->Element = X;
T->Left = T->Right = NULL;
T->Height = 0;
}
}
else
if( X < T->Element )
{
T->Left = Insert( X, T->Left );
if( Height( T->Left ) - Height( T->Right ) == 2 )
if( X < T->Left->Element )
T = SingleRotateWithLeft( T );
else
T = DoubleRotateWithLeft( T );
}
else
if( X > T->Element )
{
T->Right = Insert( X, T->Right );
if( Height( T->Right ) - Height( T->Left ) == 2 )
if( X > T->Right->Element )
T = SingleRotateWithRight( T );
else
T = DoubleRotateWithRight( T );
}
/* Else x is in the tree already, do nothing */
T->Height = Max( Height( T->Left ), Height( T->Right ) ) + 1;
return T;
}
/* This function can be called only if K2 has a left child */
/* Perform a rotate between a node (K2) and its left child */
/* Update heights,then return new root */
static Position SingleRotateWithLeft( Position K2 )
{
Position K1;
K1 = K2->Left;
K2->Left = K1->Right;
K1->Right = K2;
K2->Height = Max( Height( K2->Left ), Height( K2->Right ) ) + 1;
K1->Height = Max( Height( K1->Left ), K2->Height ) + 1;
return K1;/* New root */
}
/* This function can be called only if K1 has a right child */
/* Perform a rotate between a node (K1) and its right child */
/* Update heights,then return new root */
static Position SingleRotateWithRight( Position K1 )
{
Position K2;
K2 = K1->Right;
K1->Right = K2->Left;
K2->Left = K1;
K1->Height = Max( Height( K1->Left ), Height( K1->Right ) ) + 1;
K2->Height = Max( K1->Height, Height( K2->Right ) ) + 1;
return K2; /* New root */
}
/* This function can be called only if K3 has a left */
/* child and K3's left child has a right child */
/* Do the left-right double rotation */
/* Update heights, then return new root */
static Position DoubleRotateWithLeft( Position K3 )
{
/* Rotate between K1 and K2 */
K3->Left = SingleRotateWithRight( K3->Left );
return SingleRotateWithLeft( K3 );
}
/* This function can be called only if K1 has a right */
/* child and K1's right child has a left child */
/* Do the right-left double rotation */
/* Update heights, then return new root */
static Position DoubleRotateWithRight( Position K1 )
{
/* Rotate between K2 and K3 */
K1->Right = SingleRotateWithLeft( K1->Right );
return SingleRotateWithLeft( K1 );
}